1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Квадратные неравенства, примеры, решения

Квадратные неравенства, примеры, решения.

В этой статье собран материал, покрывающий тему «решение квадратных неравенств». Сначала показано, что представляют собой квадратные неравенства с одной переменной, дан их общий вид. А дальше детально разобрано как решать квадратные неравенства. Показаны основные подходы к решению: графический способ, метод интервалов и путем выделение квадрата двучлена в левой части неравенства. Приведены решения характерных примеров.

Навигация по странице.

  • Что такое квадратное неравенство?
  • Как решать квадратные неравенства?
    • Графическим способом.
    • Методом интервалов.
    • Путем выделения квадрата двучлена.
  • Неравенства, сводящиеся к квадратным.

Немного теории.

Сравнивать величины и количества при решении практических задач приходилось ещё с древних времён. Тогда же появились и такие слова, как больше и меньше, выше и ниже, легче и тяжелее, тише и громче, дешевле и дороже и т.д., обозначающие результаты сравнения однородных величин.

Понятия больше и меньше возникли в связи со счётом предметов, измерением и сравнением величин. Например, математики Древней Греции знали, что сторона любого треугольника меньше суммы двух других сторон и что против большего угла в треугольнике лежит большая сторона. Архимед, занимаясь вычислением длины окружности, установил, что периметр всякого круга равен утроенному диаметру с избытком, который меньше седьмой части диаметра, но больше десяти семьдесят первых диаметра.

Статья в тему:  Описать птицу лебедь. Лебедь белая и чёрный лебедь

Символически записывать соотношения между числами и величинами с помощью знаков > и b. Записи, в которых два числа соединены одним из знаков: > (больше), frac<1> <3>) верное числовое неравенство, 0,23 > 0,235 — неверное числовое неравенство.

Неравенства, в которые входят неизвестные, могут быть верными при одних значениях неизвестных и неверными при других. Например, неравенство 2x+1>5 верное при х = 3, а при х = -3 — неверное. Для неравенства с одним неизвестным можно поставить задачу: решить неравенство. Задачи решения неравенств на практике ставятся и решаются не реже, чем задачи решения уравнений. Например, многие экономические проблемы сводятся к исследованию и решению систем линейных неравенств. Во многих разделах математики неравенства встречаются чаще, чем уравнения.

Некоторые неравенства служат единственным вспомогательным средством, позволяющим доказать или опровергнуть существование определённого объекта, например, корня уравнения.

Далее вы узнаете свойства неравенств, научитесь решать неравенства. Полученные умения вам понадобятся при изучении последующего материала, для решения практических задач, а также задач физики и геометрии.

Как решить квадратное неравенство

В предыдущих уроках мы разбирали, как решать линейные неравенства. Но в отличие от линейных неравенств квадратные решаются совсем иным образом.

Решать квадратное неравенство таким же образом как и линейное нельзя !

Для решения квадратного неравенства используется специальный способ, который называется методом интервалов.

Что такое метод интервалов

Методом интервалов называют специальный способ решения квадратных неравенств. Ниже мы объясним, как использовать этот метод и почему он получил такое название.

Статья в тему:  Буклет для детей о вежливости начальная школа. Буклет для родителей "воспитание вежливости". Речевой этикет и вежливость

Чтобы решить квадратное неравенство методом интервалов нужно:

  1. перенести все члены неравенства в левую часть, так чтобы в правой остался только ноль;
  2. сделать так, чтобы при неизвестном « x 2 » стоял положительный коэффициент;
  3. приравнять левую часть неравенства к нулю и решить полученное квадратное уравнение;
  4. полученные корни уравнения разместить на числовой оси в порядке возрастания;
  5. нарисовать «арки» для интервалов. Справа налево, начиная с « + », проставить чередуя знаки « + » и « − »;
  6. выбрать необходимые интервалы и записать их в ответ.

Мы понимаем, что правила, описанные выше, трудно воспринимать только в теории, поэтому сразу рассмотрим пример решения квадратного неравенства по алгоритму выше.

Требуется решить квадратное неравенство.

Переходим к п.2. Необходимо сделать так, чтобы перед « x 2 » стоял положительный коэффициент. В неравенстве « x 2 + x − 12 » при « x 2 » стоит положительный коэффициент « 1 », значит, снова нам ничего делать не требуется.

Согласно п.3 приравняем левую часть неравенства к нулю и решим полученное квадратное уравнение.

x1;2 =

−1 ± √ 1 2 − 4 · 1 · (−12)
2 · 1

x1;2 =

−1 ± √ 1 + 48
2

x1;2 =

−1 ± √ 49
2

Теперь по п.4 отметим полученные корни на числовой оси в порядке возрастания.

Помните, что, исходя их того, какое перед нами неравенство (строгое или нестрогое) мы отмечаем точки на числовой оси разным образом.

Статья в тему:  Какая сибирская река имеет губу. Самые большие и длинные реки в россии. Питание рек и направления течения

Теперь, как сказано в п.5, нарисуем «арки» над интервалами между отмеченными точками.

Проставим знаки внутри интервалов. Справа налево чередуя, начиная с « + », отметим знаки.

Нам осталось только выполнить пункт 6, то есть выбрать нужные интервалы и записать их в ответ. Вернемся к нашему неравенству.

Так как в нашем неравенстве , значит, нам требуются отрицательные интервалы. Заштрихуем все отрицательные области на числовой оси и выпишем их в ответ.

Отрицательным интервалом оказался лишь один, который находится между числами « −4 » и « 3 », поэтому запишем его в ответ в виде двойного неравенства
−4 .

Запишем полученный ответ квадратного неравенства.

Именно из-за того, что при решении квадратного неравенства мы рассматриваем интервалы между числами, метод интервалов и получил свое название.

После получения ответа имеет смысл сделать его проверку, чтобы убедиться в правильности решения.

Выберем любое число, которое находится в заштрихованной области полученного ответа −4 и подставим его вместо « x » в исходное неравенство. Если мы получим верное неравенство, значит мы нашли ответ квадратного неравенства верно.

Возьмем, например, из интервала число « 0 ». Подставим его в исходное неравенство « x 2 + x − 12 ».

Мы получили верное неравенство при подстановке числа из области решений, значит ответ найден правильно.

Краткая запись решения методом интервалов

Сокращенно запись решения квадратного неравенства методом интервалов будет выглядеть так:

Статья в тему:  Время и деньги что выбрать. Время — деньги! И, все-таки, что важнее: время или деньги? На что тратить большие деньги

x 2 + x − 12 2 + x − 12 = 0

x1;2 =

−1 ± √ 1 2 − 4 · 1 · (−12)
2 · 1

x1;2 =

−1 ± √ 1 + 48
2

x1;2 =

−1 ± √ 49
2

x1;2 =

−1 ± 7
2

Другие примеры решения квадратных неравенств

Рассмотрим решение других примеров квадратных неравенств. Требуется решить квадратное неравенство:

В правой части неравенство уже стоит ноль. При « x 2 » стоит « 2 » ( положительный коэффициент), значит можно сразу переходить к поиску корней.

x1;2 =

−(−1) ± √ (−1 2 ) − 4 · 2 · 0
2 · 2

x1;2 =

1 ± √ 1
4

x1;2 =

1 ± 1
4

Рассмотрим пример, где перед « x 2 » в квадратном неравенстве стоит отрицательный коэффициент.

По п.2 общих правил решения методом интервалов нам нужно сделать так, чтобы перед « x 2 » стоял положительный коэффициент. Для этого умножим все неравенство на « −1 ».

Помните, что при умножении неравенства на отрицательное число, знак неравенства меняется на противоположный .

Можно переходить к п.4 и п.5. Приравняем левую часть неравенства к нулю и решим полученное квадратное уравнение. Затем расположим полученные корни на числовой оси и проведем между ними «арки».

x1;2 =

−3 ± √ 3 2 − 4 · 1 · (−4)
2 · 1

x1;2 =

−3 ± √ 9 + 16
2

x1;2 =

−3 ± √ 25
2

x1;2 =

−3 ± 5
2

При определении того какие интервалы нам нужно брать в ответ, исходить нужно из самого последнего изменения неравенства перед нахождением его корней.

Статья в тему:  Страна инков в южной америке. Десятичная административная система

В нашем случае самая последняя версия неравенства перед поиском корней уравнения это « x 2 + 3x − 4 ≤ 0 ».

Значит для ответа нужно выбирать интервалы со знаком « − ».

0″ /> Ответ: −4 ≤ x ≤ 1

К сожалению, при решении квадратного неравенства не всегда получаются два корня и все идет по общему плану выше. Возможны случаи, когда получается один корень или даже ни одного корня.

Как решить квадратные неравенства в таких случаях, мы разберем в следующем уроке «Квадратные неравенства с одним корнем или без корней».

Решение неравенства графическим методом

При решении квадратного неравенства необходимо найти корни соответствующего квадратного уравнения ax^2 + bx + c = 0. Чтобы найти корни, нужно найти дискриминант данного уравнения.

Как дискриминант влияет на корни уравнения:

  1. D = 0. Если дискриминант равен нулю, тогда у квадратного уравнения есть один корень;
  2. D > 0. Если дискриминант больше нуля, тогда у квадратного уравнения есть два корня;
  3. D

Алгоритм решения неравенств с использованием графического способа

Рассмотрение предыдущего раздела статьи подготовило нас к восприятию алгоритма решения неравенств с использованием графического способа. Для проведения вычислений нам необходимо будет каждый раз использовать чертеж, на котором будет изображена координатная прямая O х и парабола, которая отвечает квадратичной функции y = a · x 2 + b · x + c . Ось O у мы в большинстве случаев изображать не будем, так как для вычислений она не нужна и будет лишь перегружать чертеж.

Для построения параболы нам необходимо будет знать две вещи:

  • направление ветвей, которое определяется значением коэффициента a ;
  • наличие точек пересечения параболы и оси абсцисс, которые определяются значением дискриминанта квадратного трехчлена a · x 2 + b · x + c .

Точки пересечения и касания мы будет обозначать обычным способом при решении нестрогих неравенств и пустыми при решении строгих.

Наличие готового чертежа позволяет перейти к следующему шагу решения. Он предполагает определение промежутков, на которых парабола располагается выше или ниже оси O х . Промежутки и точки пересечения и являются решением квадратного неравенства. Если точек пересечения или касания нет и нет интервалов, то считается, что заданное в условиях задачи неравенство не имеет решений.

Теперь решим несколько квадратных неравенств, используя приведенный выше алгоритм.

Необходимо решить неравенство 2 · x 2 + 5 1 3 · x — 2 графическим способом.

Решение

Нарисуем график квадратичной функции y = 2 · x 2 + 5 1 3 · x — 2 . Коэффициент при x 2 положительный, так как равен 2 . Это значит, что ветви параболы будут направлены вверх.

Вычислим дискриминант квадратного трехчлена 2 · x 2 + 5 1 3 · x — 2 для того, чтобы выяснить, имеет ли парабола с осью абсцисс общие точки. Получаем:

D = 5 1 3 2 — 4 · 2 · ( — 2 ) = 400 9

Как видим, D больше нуля, следовательно, у нас есть две точки пересечения: x 1 = — 5 1 3 — 400 9 2 · 2 и x 2 = — 5 1 3 + 400 9 2 · 2 , то есть, x 1 = − 3 и x 2 = 1 3 .

Мы решаем нестрогое неравенство, следовательно проставляем на графике обычные точки. Рисуем параболу. Как видите, рисунок имеет такой же вид как и в первом рассмотренном нами шаблоне.

Наше неравенство имеет знак ≤ . Следовательно, нам нужно выделить промежутки на графике, на которых парабола расположена ниже оси O x и добавить к ним точки пересечения.

Нужный нам интервал − 3 , 1 3 . Добавляем к нему точки пересечения и получаем числовой отрезок − 3 , 1 3 . Это и есть решение нашей задачи. Записать ответ можно в виде двойного неравенства: − 3 ≤ x ≤ 1 3 .

Ответ: − 3 , 1 3 или − 3 ≤ x ≤ 1 3 .

Решите квадратное неравенство − x 2 + 16 · x − 63 0 графическим методом.

Решение

Квадрат переменной имеет отрицательный числовой коэффициент, поэтому ветви параболы будут направлены вниз. Вычислим четвертую часть дискриминанта D ‘ = 8 2 − ( − 1 ) · ( − 63 ) = 64 − 63 = 1 . Такой результат подсказывает нам, что точек пересечения будет две.

Вычислим корни квадратного трехчлена: x 1 = — 8 + 1 — 1 и x 2 = — 8 — 1 — 1 , x 1 = 7 и x 2 = 9 .

Получается, что парабола пересекает ось абсцисс в точках 7 и 9 . Отметим эти точки на графике пустыми, так как мы работаем со строгим неравенством. После этого нарисуем параболу, которая пересекает ось O х в отмеченных точках.

Нас будут интересовать промежутки, на которых парабола располагается ниже оси O х . Отметим эти интервалы синим цветом.

Получаем ответ: решением неравенства являются промежутки ( − ∞ , 7 ) , ( 9 , + ∞ ) .

Ответ: ( − ∞ , 7 ) ∪ ( 9 , + ∞ ) или в другой записи x 7 , x > 9 .

В тех случаях, когда дискриминант квадратного трехчлена равен нулю, необходимо внимательно подходить к вопросу о том, стоит ли включать в ответ абсциссы точки касания. Для того, чтобы принять правильное решение, необходимо учитывать знак неравенства. В строгих неравенствах точка касания оси абсцисс не является решением неравенства, в нестрогих является.

Решите квадратное неравенство 10 · x 2 − 14 · x + 4 , 9 ≤ 0 графическим методом.

Решение

Ветви параболы в данном случае будут направлены вверх. Она будет касаться оси O х в точке 0 , 7 , так как

Построим график функции y = 10 · x 2 − 14 · x + 4 , 9 . Ее ветви направлены вверх, так как коэффициент при x 2 положительный, и она касается оси абсцисс в точке с абсциссой 0 , 7 , так как D ‘ = ( − 7 ) 2 − 10 · 4 , 9 = 0 , откуда x 0 = 7 10 или 0 , 7 .

Поставим точку и нарисуем параболу.

Мы решаем нестрогое неравенство со знаком ≤ . Следовательно. Нас будут интересовать промежутки, на которых парабола располагается ниже оси абсцисс и точка касания. На рисунке нет интервалов, которые удовлетворяли бы нашим условиям. Есть лишь точка касания 0 , 7 . Это и есть искомое решение.

Ответ: Неравенство имеет только одно решение 0 , 7 .

Решите квадратное неравенство – x 2 + 8 · x − 16 0 .

Решение

Ветви параболы направлены вниз. Дискриминант равен нулю. Точка пересечения x 0 = 4 .

Отмечаем точку касания на оси абсцисс и рисуем параболу.

Мы имеем дело со строгим неравенством. Следовательно, нас интересуют интервалы, на которых парабола расположена ниже оси O х . Отметим их синим.

Точка с абсциссой 4 не является решением, так как в ней парабола не расположена ниже оси O x . Следовательно, мы получаем два интервала ( − ∞ , 4 ) , ( 4 , + ∞ ) .

Ответ: ( − ∞ , 4 ) ∪ ( 4 , + ∞ ) или в другой записи x ≠ 4 .

Не всегда при отрицательном значении дискриминанта неравенство не будет иметь решений. Есть случаи, когда решением будет являться множество всех действительных чисел.

Решите квадратное неравенство 3 · x 2 + 1 > 0 графическим способом.

Решение

Коэффициент а положительный. Дискриминант отрицательный. Ветви параболы будут направлены вверх. Точек пересечения параболы с осью O х нет. Обратимся к рисунку.

Мы работаем со строгим неравенством, которое имеет знак > . Это значит, что нас интересуют промежутки, на которых парабола располагается выше оси абсцисс. Это как раз тот случай, когда ответом является множество всех действительный чисел.

Ответ: ( − ∞ , + ∞ ) или так x ∈ R .

Необходимо найти решение неравенства − 2 · x 2 − 7 · x − 12 ≥ 0 графическим способом.

Решение

Ветви параболы направлены вниз. Дискриминант отрицательный, следовательно, общих точек параболы и оси абсцисс нет. Обратимся к рисунку.

Мы работаем с нестрогим неравенством со знаком ≥ , следовательно, интерес для нас представляют промежутки, на которых парабола располагается выше оси абсцисс. Судя по графику, таких промежутков нет. Это значит, что данное у условии задачи неравенство не имеет решений.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector