0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Центральная симметрия — понятие, свойства и примеры фигур

Начнём с определения: центральная симметрия — одно из свойств определённой геометрической фигуры, при котором точке В соответствует некая точка В1, находящая в таком же пространственном положении относительно точки С. Точка С лежит на середине отрезка ВВ1. Точка С называется центром симметрии. Это определение соответствует курсу планиметрии.

Центральную симметрию можно построить и в пространстве. В пространстве центральной симметрией называется словно зеркальное отображение какой-либо геометрической фигуры. Она представляет собой две одинаковые фигуры, соответственные точки которых попарно симметричны относительно точки пространства О.

Осевая симметрия

Вот как звучит определение осевой симметрии:

Осевой симметрией называется симметрия, проведенная относительно прямой. При осевой симметрии любой точке, расположенной по одну сторону прямой, всегда соответствует другая точка на второй стороне этой прямой.

При этом отрезки, соединяющие эти точки, перпендикулярны оси симметрии.

Осевая симметрия часто встречается в повседневной жизни. К сожалению, не на фото в паспорте и не в стрелках на глазах. Но её вполне себе можно встретить в половинках авокадо, на морде кота или в зданиях вокруг. Осевая симметрия — неотъемлемая часть архитектуры. Оглядитесь и поищите примеры осевой симметрии вокруг вас.

Статья в тему:  Определение уровня эмпатии: тест И. Юсупова. Тест на уровень эмпатии

В геометрии есть фигуры, обладающие осевой симметрией: квадрат, треугольник, ромб, прямоугольник.

Давайте разберемся, как построить фигуру, симметричную данной относительно прямой.

Пример 1. Постройте треугольник A1B1C1 ,симметричный треугольнику ABC относительно прямой.

  1. Проведем из вершин треугольника ABC три прямые, перпендикулярные оси симметрии, выведем эти прямые на другую сторону оси симметрии.
  2. Найдем расстояние от вершин треугольника ABC до точек на оси симметрии.
  3. С другой стороны прямой отложим такие же расстояния.
  4. Соединяем точки отрезками и строим треугольник A1B1C1, симметричный треугольнику ABC.
  5. Получаем два треугольника, симметричных относительно оси симметрии.

Пример 2. Постройте треугольник, симметричный треугольнику ABC относительно прямой d.

  1. Строим по уже известному алгоритму. Проводим прямые, перпендикулярные прямой d, из вершин треугольника ABC и выводим их на другую сторону оси симметрии.
  2. Измеряем расстояние от вершин до точек на прямой.
  3. Откладываем такие же расстояния на другой стороне оси симметрии.
  4. Соединяем точки и строим треугольник A1B1C1.

Пример 3. Построить отрезок A1B1, симметричный отрезку AB относительно прямой l.

  1. Проводим через точку А прямую, перпендикулярную прямой l.
  2. Проводим через точку В прямую, перпендикулярную прямой l.
  3. Измеряем расстояния от точек А и В до прямой l.
  4. Откладываем такое же расстояние на перпендикулярных прямых от прямой l по другую сторону и ставим точки A1 и B1.
  5. Соединяем точки A1 и B1.

Больше примеров и увлекательных заданий — на курсах по математике в онлайн-школе Skysmart!

Статья в тему:  Как бороться с кислородным голоданием мозга. Симптомы кислородного голодания мозга

Осевая и центральная симметрии. Проводим урок с ЭФУ

Повторение материала

Из курса математики 5 класса учащиеся уже узнали, как выглядят и строятся фигуры, имеющие ось симметрии. Перед изучением темы «Осевая и центральная симметрии» будет целесообразно повторить материал 5 класса. Следует разъяснить учащимся, что построение фигуры во многих случаях возможно по положению ключевых точек.

Для закрепления этого интуитивно-наглядного понимания, учитель может предложить детям перегнуть лист бумаги, на котором изображены симметричные фигуры.

.

Понятие симметрии

Слово «симметрия» происходит от греческого symmetria, что означает соразмерность. В нашем случае, симметрия — это свойство геометрических фигур к отображению.

Учитель: Симметрия используется в рисунках, орнаментах, архитектуре с давних времен. Где еще симметрию могут использовать люди?
Ученики: при строительстве домов; в изготовлении предметов быта.
Учитель: верно, но ведь симметрия распространена не только там, где творил человек! Мы видим симметричные объекты природы каждый день. Назовите мне три таких объекта!
Ученики: Бабочка, цветы, форма листа! Морская звезда, снежинка, яблоко в разрезе.

Симметрий, как это не покажется вам странным и любопытным, много, но мы будем рассматривать две симметрии на плоскости: относительно точки и прямой.

Осевая симметрия

Осевая симметрия — это симметрия относительно проведённой прямой (оси).

Заметим, что любые две фигуры, симметричные относительно некоторой прямой, равны (Рис.131). Все точки фигуры, имеющей ось симметрии, не принадлежащие этой оси, можно разделить на пары симметричных точек (Рис. 132).

Статья в тему:  Млекопитающие, которых можно встретить на филиппинах. Филиппинский шерстокрыл или кагуан (лат. Cynocephalus volans)

Центральная симметрия

Симметрию относительно точки называют центральной симметрией.

Фигуры, имеющие центр симметрии — понятие, воспринимающееся учащимися сложнее, чем фигуры, имеющие ось симметрии. Для удобства восприятия и понимания, рекомендуется привести как можно больше примеров из окружающей природы.

В зависимости от уровня математической подготовки учащихся класса, можно обратить их внимание на то, что прямая — это фигура, имеющая бесконечно много осей и центров симметрии.

С помощью заданий из «Классной работы» материал можно закрепить в различных графических форматах.

Актуализация знаний

Предложите ребятам решить задание № 1260. Какие печатные буквы русского алфавита имеют 1) вертикальную ось симметрии; 2) горизонтальную ось симметрии; 3) горизонтальную и вертикальную оси?

Готовый яркий раздаточный материал «Алфавит» вы можете скачать в конце этой статьи.

Также рекомендуем вам применять на уроке различные методы преподнесения информации: как визуальный, так и аудио. Попробуйте аудиодиктант.

поворотная симметрия (симметрия вращения)

При поворотной симметрии переход частей фигуры в новое положение или преобразование исходной фигуры происходит при повороте фигуры на определенный угол вокруг точки, которая называется центром поворота. Поворотная симметрия может рассматриваться на плоскости и в пространстве.

Тело (фигура) обладает симметрией вращения, если при повороте на угол 360°/n (n – целое число, например, 2, 3, 4 и т.д. до бесконечности) вокруг некоторой прямой (оси симметрии) оно полностью совпадает со своим начальным положением. При n = 2 мы имеем осевую симметрию.

Статья в тему:  Дальневосточная жаба — Bufo gargarizans. Дальневосточная жаба Распространение и среда обитания

Чтобы получить доступ к этому и другим видеоурокам комплекта, вам нужно добавить его в личный кабинет, приобрев в каталоге.

Получите невероятные возможности

Конспект урока «Осевая и центральная симметрии»

Наверняка, каждый из вас не раз слышал слово «симметричный». К чему же это интересное слово можно отнести?

Возьмем, к примеру, листок какого-нибудь растения. Если сложить его пополам, то можно заметить, что каждая из получившихся частей (левая и правая) окажутся одинаковыми, т.е. симметричными.

Аналогично можно поступить и с некоторыми цветами.

В животном мире также можно заметить такую особенность. Вот, например, посмотрим на бабочку. Ее крылья симметричны относительно тельца.

А если посмотреть на здания, которые нас окружают? То снова заметим симметричные части. То же самое вы можете обнаружить в искусстве, да и просто в быту.

Теперь поговорим о том, что же в математике понимают под словом «симметричный», или «симметрия».

В переводе с греческого слово «симметрия» означает соразмерность, то есть схожесть, одинаковость. Это свойство геометрических объектов сохранять расположение элементов фигуры относительно оси или центра симметрии в неизменном состоянии при некоторых преобразованиях.

На этом уроке мы поговорим об осевой симметрии (симметрии относительно прямой) и о центральной симметрии (симметрии относительно точки).

Начнём с осевой симметрии.

Точки и называются симметричными относительно прямой , если эта прямая проходит через середину отрезка и перпендикулярна отрезку .

Статья в тему:  Пройти тест имя будущего парня. Лучшие способы узнать имя будущего мужа: по руке, дате рождения и картам

Давайте найдём точку симметричную данной относительно прямой.

Возьмём прямую а и точку А. Проведём через точку А прямую АО, перпендикулярную прямой а. Затем отложим на прямой АО отрезок ОА1, равный отрезку АО.

Таким образом, получили точку А1 симметричную точке А относительно прямой а.

На следующем рисунке точки B и B1 симметричны относительно прямой b, точки C и C1 также симметричны относительно прямой b, а вот точка D симметрична самой себе относительно прямой b. Точки Е и E1 не симметричны относительно прямой b, так как прямая b проходит не через середину отрезка EE1.

Фигура называется симметричной относительно прямой а, если для каждой точки фигуры симметричная ей точка относительно прямой а также принадлежит этой фигуре.

Прямую а называют осью симметрии фигуры.

Осевой симметрией обладает равнобедренный треугольник.

Он имеет одну ось симметрии, на которой расположена биссектриса, проведённая из вершины к основанию. То есть, если мы перегнём равнобедренный треугольник по оси симметрии, то каждая точка одной половины будет иметь симметричную ей точку на второй половине.

Равносторонний треугольник также обладает осевой симметрией и имеет три оси симметрии, на которых расположены биссектрисы углов треугольника.

Равнобедренная трапеция имеет ось симметрии, на которой лежит прямая проходящая через середины её оснований.

Прямоугольник имеет две оси симметрии, которые проходят через середины его противолежащих сторон.

Ромб также имеет две оси симметрии, на которых расположены его диагонали…

Статья в тему:  Гадание на воске коса значение. Гадание на воске: значение фигур и толкование. Этапы проведения гадания

Квадрат имеет четыре оси симметрии, так как одновременно является и прямоугольником и ромбом.

А вот у окружности каждая прямая, проходящая через её центр, является осью симметрии. Так как таких прямых можно провести бесконечно много, то и осей симметрии у окружности бесконечно много.

Но есть и фигуры, у которых нет ни одной оси симметрии. Примерами таких фигур являются разносторонний треугольник. Или параллелограмм, который не является прямоугольником или ромбом.

Теперь поговорим о центральной симметрии, то есть симметрии относительно точки.

Точки А и A1 называются симметричными относительно точки О, если точка О – середина отрезка АА1.

Давайте найдём точку симметричную данной относительно точки О.

Возьмём произвольные точки А и О. И проведём через них прямую АО. Затем на этой прямой отложим отрезок ОА1 равный отрезку АО.

Таким образом, мы получили точку А1 симметричную точке А относительно точки О.

Посмотрите на следующий рисунок.

Здесь точка B симметрична точке B1 относительно точки О. Точки C и C1 также симметричны относительно точки О. Точка О симметрична сама себе. А точки D и D1 не симметричны относительно точки О, так как отрезки DO и OD1 не равны.

Фигура называется симметричной относительно точки О, если для каждой точки фигуры симметричная ей точка относительно точки О также принадлежит этой фигуре.

Точку О называют центром симметрии фигуры.

Статья в тему:  Пляжный отдых в франции. Пляжный отдых во франции

Центральной симметрией обладает окружность.

Её центр является центром симметрии. То есть, для любой точки окружности существует ей симметричная относительно центра.

Параллелограмм также обладает центральной симметрией. Центром его симметрии является точка пересечения диагоналей.

Раз параллелограмм обладает центральной симметрией, то известные нам прямоугольник, ромб и квадрат также обладают центральной симметрией, центром которой является точка пересечения их диагоналей.

Центральной симметрией обладает и прямая, причём любая точка прямой является центром её симметрии.

Примером фигуры, не обладающей центральной симметрией, является произвольный треугольник.

А вот, например, такие фигуры, как прямоугольник, ромб, квадрат, окружность имеют обе симметрии (осевую и центральную).

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector